Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
Waste Manag ; 179: 216-233, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38489980

ABSTRACT

Bisphenol A (BPA) accumulates in the environment at lethal concentrations because of its high production rate and utilization. BPA, originating from industrial effluent, plastic production, and consumer products, poses serious risks to both the environment and human health. The widespread aggregation of BPA leads to endocrine disruption, reactive oxygen species-mediated DNA damage, epigenetic modifications and carcinogenicity, which can disturb the normal homeostasis of the body. The living being in a population is subjected to BPA exposure via air, water and food. Globally, urinary analysis reports have shown higher BPA concentrations in all age groups, with children being particularly susceptible due to its occurrence in items such as milk bottles. The conventional methods are costly with a low removal rate. Since there is no proper eco-friendly and cost-effective degradation of BPA reported so far. The phytoremediation, green-biotechnology based method which is a cost-effective and renewable resource can be used to sequestrate BPA. Phytoremediation is observed in numerous plant species with different mechanisms to remove harmful contaminants. Plants normally undergo several improvements in genetic and molecular levels to withstand stress and lower levels of toxicants. But such natural adaptation requires more time and also higher concentration of contaminants may disrupt the normal growth, survival and yield of the plants. Therefore, natural or synthetic amendments and genetic modifications can improve the xenobiotics removal rate by the plants. Also, constructed wetlands technique utilizes the plant's phytoremediation mechanisms to remove industrial effluents and medical residues. In this review, we have discussed the limitations and futuristic advancement strategies for degrading BPA using phytoremediation-associated mechanisms.


Subject(s)
Endocrine Disruptors , Environmental Pollutants , Phenols , Child , Humans , Environmental Pollutants/analysis , Environmental Pollutants/metabolism , Biodegradation, Environmental , Endocrine Disruptors/analysis , Benzhydryl Compounds , Plants/metabolism
2.
Bioresour Technol ; 389: 129823, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37805085

ABSTRACT

The role of protein shell (PS) amendment in altering the fungal community during pig manure (PM) composting was investigated. Six different dosages of PS based on the dry weight of PM (0 %, 2.5 %, 5 %, 7.5 %, 10 %, and 12 %; T1-T6, respectively) were mixed with wheat straw to make the initial feedstock and composted for 42 days. The results showed that Ascomycota, Basidiomycota, and Giomeromycota were the most abundant phyla in all treatments. However, the relative abundance of Giomeromycota was the highest in the control treatment, although a substantially greater population was observed in all treatments. Genus abundance declined steadily from T1 to T6; however, T4 and T6 had smaller populations. Correlation analysis also suggested that T6 amendment increased the overall fungal dynamics and organic matter degradation. Thus, T6 was more efficient to enhance the overall fungal population and dynamics with considerable network connections among all the analyzed parameters.


Subject(s)
Composting , Mycobiome , Animals , Swine , Soil , Manure/microbiology , Charcoal/metabolism
3.
Bioresour Technol ; 388: 129725, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37683709

ABSTRACT

The suitability of biochar as a supplement for environmental restoration varies significantly based on the type of feedstocks used and the parameters of the pyrolysis process. This study comprehensively examines several aspects of biochar's potential benefits, its capacity to enhance crop yields, improve nutrient availability, support the co-composting, water restoration and enhance overall usage efficiency. The supporting mechanistic evidence for these claims is also evaluated. Additionally, the analysis identifies various gaps in research and proposes potential directions for further exploration to enhance the understanding of biochar application. As a mutually advantageous approach, the integration of biochar into agricultural contexts not only contributes to environmental restoration but also advances ecological sustainability. The in-depth review underscores the diverse suitability of biochar as a supplement for environmental restoration, contingent upon the specific feedstock sources and pyrolysis conditions used. However, concerns have been raised regarding potential impacts on human health within agricultural sectors.

4.
Bioresour Technol ; 387: 129660, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37573978

ABSTRACT

This review article critically evaluates the significance of adopting advanced biofuel production techniques that employ lignocellulosic materials, waste biomass, and cutting-edge technology, to achieve sustainable environmental stewardship. Through the analysis of conducted research and development initiatives, the study highlights the potential of these techniques in addressing the challenges of feedstock supply and environmental impact and implementation policies that have historically plagued the conventional biofuel industry. The integration of state-of-the-art technologies, such as nanotechnology, pre-treatments and enzymatic processes, has shown considerable promise in enhancing the productivity, quality, and environmental performance of biofuel production. These developments have improved conversion methods, feedstock efficiency, and reduced environmental impacts. They aid in creating a greener and sustainable future by encouraging the adoption of sustainable feedstocks, mitigating greenhouse gas emissions, and accelerating the shift to cleaner energy sources. To realize the full potential of these techniques, continued collaboration between academia, industry representatives, and policymakers remains essential.


Subject(s)
Biofuels , Conservation of Natural Resources , Biotechnology/methods , Biomass , Policy
5.
Bioresour Technol ; 384: 129325, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37315627

ABSTRACT

The objective of this research was to elucidate the effect of varying proportions of magnesite (MS) addition - 0% (T1), 2.5% (T2), 5% (T3), 7.5% (T4), and 10% (T5) - on nitrogen transformation and bacterial community dynamics during pig manure composting. In comparison to T1 (control), MS treatments amplified the abundance of Firmicutes, Actinobacteriota, and Halanaerobiaeota, bolstered the metabolic functionality of associated microorganisms, and enhanced the nitrogenous substance metabolic pathway. A complementary effect in core bacillus species played a key role in nitrogen preservation. Compared to T1, 10% MS demonstrated the most substantial influence on composting because Total Kjeldahl Nitrogen increased by 58.31% and NH3 emission decreased by 41.52%. In conclusion, 10% MS appears to be optimal for pig manure composting, as it can augment microbial abundance and mitigate nitrogen loss. This study offers a more ecologically sound and economically viable method for curtailing nitrogen loss during composting.


Subject(s)
Composting , Nitrogen , Animals , Swine , Manure , Soil , Bacteria
6.
Bioresour Technol ; 384: 129329, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37329992

ABSTRACT

This article provides an overview of biochar application for organic waste co-composting and its biochemical transformation mechanism. As a composting amendment, biochar work in the adsorption of nutrients, the retention of oxygen and water, and the promotion of electron transfer. These functions serve the micro-organisms (physical support of niche) and determine changes in community structure beyond the succession of composing primary microorganisms. Biochar mediates resistance genes, mobile gene elements, and biochemical metabolic activities of organic matter degrading. The participation of biochar enriched the α-diversity of microbial communities at all stages of composting, and ultimately reflects the high γ-diversity. Finally, easy and convincing biochar preparation methods and characteristic need to be explored, in turn, the mechanism of biochar on composting microbes at the microscopic level can be studied in depth.


Subject(s)
Composting , Microbiota , Soil , Charcoal , Manure
7.
Bioresour Technol ; 373: 128745, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36796733

ABSTRACT

The impact of wheat straw biochar (WSB) on bacterial dynamics succession during food waste (FW) composting was analyzed. Six treatments [0(T1), 2.5(T2), 5 (T3), 7.5 (T4), 10 (T5), and 15 %(T6)] dry weight WSB were used with FW and saw dust for composting. At the highest thermal peak at 59 ℃ in T6, the pH varied from 4.5 to 7.3, and electrical conductivity among the treatments varied from 1.2 to 2.0 mScm1. Firmicutes (25-97 %), Proteobacteria (8-45 %), and Bacteroidota (5-50 %) were among the dominate phyla of the treatments. Whereas, Bacillus (5-85 %), Limoslactobacillus (2-40 %), and Sphingobacterium (2-32 %) were highest among the identified genus in treatments but surprisingly Bacteroides was in greater abundance in the control treatments. Moreover, heatmap constructed with 35 various genera in all the treatments showed that Gammaproteobacterial genera contributed in large proportion after 42 days in T6. Additionally, a dynamic shift from Lactobacillus fermentum to higher abundance of Bacillus thermoamylovorans was reported on 42 days of FW composting. Biochar 15 % amendment can improve FW composting by influencing bacterial dynamics.


Subject(s)
Composting , Refuse Disposal , Food , Manure/microbiology , Charcoal , Bacteria , Triticum , Soil
8.
Bioresour Technol ; 367: 128281, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36370945

ABSTRACT

As the global demand for sustainable energy increases, lignocellulosic (such as agricultural residues, forest biomass, municipal waste, and dedicated energy crops) and algal (including macroalgae and microalgae) biomass have attracted considerable attention, because of their high availability of carbohydrates. This is a potential feedstock to produce biochemical and bioenergy. Pretreatment of biomass can disrupt their complex structure, increasing conversion efficiency and product yield. Therefore, this review comprehensively discusses recent advances in different pretreatments (physical, chemical, physicochemical, and biological pretreatments) for lignocellulosic and algal biomass and their biorefining methods. Life cycle assessment (LCA) which enables the quantification of the environmental impact assessment of a biorefinery also be introduced. Biorefinery processes such as raw material acquisition, extraction, production, waste accumulation, and waste conversion are all monitored under this concept. Nevertheless, there still exist some techno-economic barriers during biorefinery and extensive research is still needed to develop cost-effective processes.


Subject(s)
Biofuels , Lignin , Biomass , Lignin/metabolism , Crops, Agricultural/metabolism
9.
Environ Sci Pollut Res Int ; 30(4): 8977-8986, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35507222

ABSTRACT

The use of jackfruit peel as a source for natural and fully biodegradable "nanocellulose" (NC) for the production of bioplastics with Azadirachta indica (A. indica) extracts and polyethylene glycol (PEG) for the antibacterial properties is investigated. The characterization of the biocomposite using FT-IR and WXRD was reported. The physicochemical properties including thickness, moisture content, water holding capacity, swelling, porosity, and biodegradability in soil were investigated. The incorporation of A. indica extract revealed an increased shelf life due to the strong antibacterial activity, and these biocomposites were degraded in soil within 60 days after the end use without any harm to the environment. Jackfruit-derived nanocellulose film blended with A. indica extract exhibited strong antibacterial activity against gram-positive and gram-negative food spoilage bacteria. Disc diffusion assay, live/dead assay, and CFU analysis confirmed the antibacterial property of the synthesized film. Moreover, the films clearly prevented the biofilm formation in bacteria. Thus, the developed bioplastics can be utilized as appropriate substitutes to food packaging materials and also for biomedical applications such as wound dressings.


Subject(s)
Artocarpus , Azadirachta , Biological Products , Plant Extracts/pharmacology , Plant Extracts/chemistry , Spectroscopy, Fourier Transform Infrared , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria , Gram-Negative Bacteria , Azadirachta/chemistry
10.
Bioresour Technol ; 361: 127739, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35940323

ABSTRACT

This study explored the feasibility of thermosonication (TS)-prestressed inoculum with different fermentation patterns for regulating microbial (post)-fermentation acidification kinetics. Through a Box-Behnken design, stimulative (20 min, 400 W, 33 kHz, 25 °C) and inhibitive (10 min, 600 W, 33 kHz, 20 °C) effects on the acidification capability of Lactobacillus plantarum A3 were achieved without observing greatly activated/inactivated strains growth, further confirmed by lactose fermentation performed by Streptococcus thermophilus and Lactobacillus bulgaricus. Lactic acid was the major contributing factor responsible for TS-induced acidification modifications corresponding to the potential fluctuations of CoA biosynthesis, fatty acid degradation and chain elongation pathways to TS prestress. Microscopy observations and quantitative extracellular substance assays showed palpable stress disturbance on microbes, but causing insignificant effects on product characteristics. This investigation demonstrated the potential of controlled sonication prestress strategies to achieve dual engineering effects on microbial metabolic behavior, for alleviating post-acidification problem or enhancing process efficiencies.


Subject(s)
Fermentation , Lactobacillales , Lactobacillus , Hydrogen-Ion Concentration , Kinetics , Lactobacillus/metabolism
11.
Bioresour Technol ; 362: 127833, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36029981

ABSTRACT

Current experimental evidence has revealed that pomegranate peel is a significant source of essential bio compounds, and many of them can be transformed into valorized products. Pomegranate peel can also be used as feedstock to produce fuels and biochemicals. We herein review this pomegranate peel conversion technology and the prospective valorized product that can be synthesized from this frequently disposed fruit waste. The review also discusses its usage as a carbon substrate to synthesize bioactive compounds like phenolics, flavonoids and its use in enzyme biosynthesis. Based on reported experimental evidence, it is apparent that pomegranate peel has a large number of applications, and therefore, the development of an integrated biorefinery concept to use pomegranate peel will aid in effectively utilizing its significant advantages. The biorefinery method displays a promising approach for efficiently using pomegranate peel; nevertheless, further studies should be needed in this area.


Subject(s)
Lythraceae , Pomegranate , Antioxidants/analysis , Fruit/chemistry , Lythraceae/chemistry , Plant Extracts/chemistry , Prospective Studies
12.
Bioresour Technol ; 360: 127541, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35777646

ABSTRACT

The effects of magnesite (MS) on fungi communities and the core fungi complementarity during pig manure (PM) composting were explored. Different dosage of MS [0% (T1), 2.5% (T2), 5% (T3), 7.5% (T4) and 10% (T5)] as amendments mixed with PM for 42 days composting. The results showed the dominant of phyla were Ascomycota (78.87%), Neocallimastigomycota (41.40%), Basidiomycota (30.81%) and Aphelidiomycota (29.44%). From day 7 to 42, the abundance of Ascomycota and Aphelidiomycota were increased from 7.75% to 42.41% to 57.27%-78.87% and 0-0.70% to 11.73%-29.44% among all treatments. Nevertheless, the phyla abundance of Neocallimastigomycota and Basidiomycota decreased from day 7 to 42. The co-occurrence network indicated that the high additive amendment could enhance the core fungi complementarity effects capacity. The 10% MS addition was a promisable candidate to optimum fungal communities, and causing a better compost quality. This study illustrated the potential and fungi communities changing of MS as additives in composting.


Subject(s)
Ascomycota , Basidiomycota , Composting , Mycobiome , Animals , Magnesium , Manure/microbiology , Soil , Swine
13.
Bioresour Technol ; 360: 127565, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35788392

ABSTRACT

This review provides an update on the state-of-the art technologies for the valorization of solid waste and its mechanism to generate various bio-products. The organic content of these wastes can be easily utilized by the microbes and produce value-added compounds. Microbial fermentation techniques can be utilized for developing waste biorefinery processes. The utilization of lignocellulosic and plastics wastes for the generation of carbon sources for microbial utilization after pre-processing steps will make the process a multi-product biorefinery. The C1 and C2 gases generated from different industries could also be utilized by various microbes, and this will help to control global warming. The review seeks to expand expertise about the potential application through several perspectives, factors influencing remediation, issues, and prospects.


Subject(s)
Biofuels , Solid Waste , Biofuels/analysis , Fermentation
14.
Bioresour Technol ; 360: 127620, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35840028

ABSTRACT

The development of sustainable and low carbon impact processes for a suitable management of waste and by-products coming from different factors of the industrial value chain like agricultural, forestry and food processing industries. Implementing this will helps to avoid the negative environmental impact and global warming. The application of the circular bioeconomy (CB) and the circular economic models have been shown to be a great opportunity for facing the waste and by-products issues by bringing sustainable processing systems which allow to the value chains be more responsible and resilient. In addition, biorefinery approach coupled to CB context could offer different solution and insights to conquer the current challenges related to decrease the fossil fuel dependency as well as increase efficiency of resource recovery and processing cost of the industrial residues. It is worth to remark the important role that the biotechnological processes such as fermentative, digestive and enzymatic conversions play for an effective waste management and carbon neutrality.


Subject(s)
Biofuels , Waste Management , Biotechnology , Carbon , Recycling
15.
Bioresour Technol ; 360: 127644, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35868462

ABSTRACT

The impact of scleral protein shell (SPS) amendment on bacterial community succession during pig manure (PM) composting were evaluated in the present work. Five treatments representing different dry weight dosage of SPS [0 % (T1), 2.5 % (T2), 5 % (T3), 7.5 % (T4), 10 % (T5) and 12 % (T6)] were applied with initial mixture of raw materials (Wheat straw along with the PM) and composted for 42 days. Results indicated that the dominant of phyla were Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes. The relative abundance (RA) of genus un-identified, Ruminofilibacter, Thermovum, Longispora and Pseudomonas were greater among the all treatments but interestingly genus Ruminofilibacter was also higher in control treatment. The network analysis was confirmed that T6 treatment with higher dosage of SPS amendment could enhance the bacterial population and rate of organic matter mineralization. Compared with T1, the T5 has greater potential impact to enhance the bacterial population and significant correlation among the pH and temperature.


Subject(s)
Composting , Animals , Bacteria , Bacteroidetes , Manure/microbiology , Soil , Swine , Triticum
16.
Bioresour Technol ; 360: 127591, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35809873

ABSTRACT

Composting technologies have come a long way, developing from static heaps and windrow composting to smart, artificial intelligence-assisted reactor composting. While in previous years, much attention has been paid to identifying ideal organic waste streams and suitable co-composting candidates, more recent efforts tried to determine novel process-enhancing supplements. These include various single and mixed microbial cultures, additives, bulking agents, or combinations thereof. However, there is still ample need to fine-tune the composting process in order to reduce its impact on the environment and streamline it with circular economy goals. In this review, we highlight recent advances in integrating mathematical modelling, novel supplements, and reactor designs with (vermi-) composting practices and provide an outlook for future developments. These results should serve as reference point to target adjusting screws for process improvement and provide a guideline for waste management officials and stakeholders.


Subject(s)
Composting , Oligochaeta , Waste Management , Animals , Artificial Intelligence , Soil
17.
Bioresour Technol ; 359: 127444, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35691504

ABSTRACT

The bioremediation of emerging recalcitrant pollutants in wastewater via enzyme biotechnology has been evolving as cost-effective with an input of low-energy technological approach. However, the enzyme based bioremediation technology is still not fully developed at a commercial level. The oxidoreductases being the domineering biocatalysts are promising candidates for wastewater treatments. Henceforth, comprehending their global market and biotransformation efficacy is mandatory for establishing these techno-economic bio-enzymes in commercial scale. The biocatalytic strategy can be established as a combinatorial approach with existing treatment technology to achieve towering bioremediation and effective removal of emerging pollutants from wastewater. This review provides a novel insight on the toxicological xenobiotics released from industries such as paper and pulps, soap and detergents, pharmaceuticals, textiles, pesticides, explosives and aptitude of peroxidases, nitroreductase and cellobiose dehydrogenase in their bio-based treatment. Moreover, the review comprehensively covers environmental relevance of wastewater pollution and the critical challenges based on remediation achieved through biocatalysts for future prospectives.


Subject(s)
Environmental Pollutants , Pesticides , Biodegradation, Environmental , Environmental Pollutants/metabolism , Oxidoreductases , Wastewater
18.
Bioresour Technol ; 357: 127374, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35623605

ABSTRACT

This study uses a cost effective and efficient method for production of higher DP (degree of polymerization) Xylooligosaccharides (XOS) from xylan extracted from the waste walnut shells. Copper based metal organic framework (Cu-BTC MOF) was prepared for immobilization of free xylanase (Xy) enzyme by green synthesis method. Both free and immobilized xylanase (Xy-Cu-BTC) were able to cause the bioconversion of xylan (87.4% yield) into XOS. Predominant production of xylotetrose (X4) and xylopentose (X5) was observed for both the methods. Percentage XOS conversion for free enzyme (Xy) was found to be 4.1% X4 and 60.57% X5 whereas these values increased in case of immobilized system where 11.8% X4 and 64.2% X5 were produced. Xylose production was minute in case of immobilized xylanase 0.88% which makes it a better method for XOS production free from xylose interference. Xy-Cu-BTC MOF can hence be used as an attractive alternative for pure XOS production.


Subject(s)
Juglans , Xylans , Endo-1,4-beta Xylanases , Glucuronates , Hydrolysis , Oligosaccharides , Polymerization , Xylose
19.
Bioengineered ; 13(5): 12823-12833, 2022 05.
Article in English | MEDLINE | ID: mdl-35609323

ABSTRACT

Nanocellulose are nano-sized components which are biodegradable, biocompatible and renewable. It offers mechanical strength and chemical stability in plants and bacteria. The environmental contamination is reduced by employing various bioremediation techniques which usesmicroorganisms like algae, bacteria and fungi as bio-adsorbents. The bio adsorbent property of nanocellulose contribute more for the bioremediation methods and the detailed study of its mechanism and application is essential which is discussed here. The mechanism happening between the contaminant and nanocellulose adsorbent should be explored in detail in order to develop effective new bioremediation strategies. Nanocellulose structural functionalization helps to modify the nanocellulose structure based on which it can be utilized for specific functions. Exploring the mechanisms that contribute to the implementation of nanocellulose in tissue engineering helps for further developments and advancement in the biomedical application of nanocellulose. Not much studies are available that elucidate and study the basic steps involved in the biomedical and environmental usage of nanocellulose. This review has focussed on the basic mechanisms involved in the use of nanocellulose in tissue engineering and bioremediation processes.


Subject(s)
Nanostructures , Tissue Engineering , Biocompatible Materials/chemistry , Biodegradation, Environmental , Cellulose , Nanostructures/chemistry
20.
Bioresour Technol ; 352: 127105, 2022 May.
Article in English | MEDLINE | ID: mdl-35378286

ABSTRACT

Lignocellulose waste was served as promising raw material for bioethanol production. Bioethanol was considered to be a potential alternative energy to take the place of fossil fuels. Lignocellulosic biomass synthesized by plants is regenerative, sufficient and cheap source for bioethanol production. The biotransformation of lignocellulose could exhibit dual significance-reduction of pollution and obtaining of energy. Some strategies are being developing and increasing the utilization of lignocellulose waste to produce ethanol. New technology of bioethanol production from natural lignocellulosic biomass is required. In this paper, the progress in genetic manipulation strategies including gene editing and synthetic genomics for the transformation from lignocellulose to ethanol was reviewed. At last, the application prospect of bioethanol was introduced.


Subject(s)
Biofuels , Ethanol , Biomass , Ethanol/metabolism , Lignin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...